Science benha | منتديات كلية علوم بنها|خدمات علوم بنها| اسلاميات| برامج | صور| افلام | mp3
هل تريد التفاعل مع هذه المساهمة؟ كل ما عليك هو إنشاء حساب جديد ببضع خطوات أو تسجيل الدخول للمتابعة.


Science benha | منتديات كلية علوم بنها|خدمات علوم بنها| اسلاميات| برامج | صور| صوتيات ومرئيات | mp3
 
الرئيسيةالرئيسية  البوابةالبوابة  أحدث الصورأحدث الصور  التسجيلالتسجيل  دخولدخول  
المواضيع الأخيرة» معهد تعليم اللغة العربية لغير الناطقين بها بجامعة المدينة العالميةحصريا معلومات مكثفه عن acids and bases Empty الثلاثاء يوليو 21, 2015 11:09 pm من طرف ‎أبو أنس الحضرمي» مركز اللغات بجامعة المدينة العالميةحصريا معلومات مكثفه عن acids and bases Empty الثلاثاء يوليو 21, 2015 11:07 pm من طرف ‎أبو أنس الحضرمي» وكالة البحوث والتطوير بجامعة المدينة العالميةحصريا معلومات مكثفه عن acids and bases Empty الثلاثاء يوليو 21, 2015 11:05 pm من طرف ‎أبو أنس الحضرمي» مجمع مجلة جامعة المدينة العالمية المحكمة بجامعة المدينة العالميةحصريا معلومات مكثفه عن acids and bases Empty الثلاثاء يوليو 21, 2015 11:04 pm من طرف ‎أبو أنس الحضرمي» كلية العلوم المالية والإدارية بجامعة المدينة العالميةحصريا معلومات مكثفه عن acids and bases Empty الثلاثاء يوليو 21, 2015 11:02 pm من طرف ‎أبو أنس الحضرمي» كلية العلوم الإسلامية بجامعة المدينة العالميةحصريا معلومات مكثفه عن acids and bases Empty الثلاثاء يوليو 21, 2015 11:01 pm من طرف ‎أبو أنس الحضرمي» جامعة المدينة العالمية [MEDIU] ماليزياحصريا معلومات مكثفه عن acids and bases Empty الثلاثاء يوليو 21, 2015 10:59 pm من طرف ‎أبو أنس الحضرمي» المكتبة الرقمية بجامعة المدينة العالميةحصريا معلومات مكثفه عن acids and bases Empty الثلاثاء يوليو 21, 2015 10:57 pm من طرف ‎أبو أنس الحضرمي» عمادة الدراسات العليا بجامعة المدينة العالميةحصريا معلومات مكثفه عن acids and bases Empty الثلاثاء يوليو 21, 2015 10:55 pm من طرف ‎أبو أنس الحضرمي» معهد تعليم اللغة العربية لغير الناطقين بها بجامعة المدينة العالميةحصريا معلومات مكثفه عن acids and bases Empty الثلاثاء يوليو 21, 2015 10:49 pm من طرف ‎أبو أنس الحضرمي
>

شاطر
 

 حصريا معلومات مكثفه عن acids and bases

استعرض الموضوع التالي استعرض الموضوع السابق اذهب الى الأسفل 
كاتب الموضوعرسالة
MaHmOuD SaLaH
Web Master
Web Master
MaHmOuD SaLaH

ذكر
الْمَشِارَكِات : 10554
الْعُمْر : 32
الْنِّقَاط : 19224
السٌّمعَة : 243

حصريا معلومات مكثفه عن acids and bases Empty
مُساهمةموضوع: حصريا معلومات مكثفه عن acids and bases   حصريا معلومات مكثفه عن acids and bases Emptyالأحد سبتمبر 13, 2009 6:52 pm

Properties of Acids and Bases According to Boyle
In 1661 Robert Boyle summarized the properties of acids as follows.
1. Acids have a sour taste.
2. Acids are corrosive.
3. Acids change the color of certain vegetable dyes, such as litmus, from blue to red.
4. Acids lose their acidity when they are combined with alkalies.
The name "acid" comes from the Latin acidus, which means "sour," and refers to the sharp odor and sour taste of many acids.
Examples: Vinegar tastes sour
because it is a dilute solution of acetic acid in water. Lemon juice
tastes sour because it contains citric acid. Milk turns sour when it
spoils because lactic acid is formed, and the unpleasant, sour odor of
rotten meat or butter can be attributed to compounds such as butyric
acid that form when fat spoils.

In 1661 Boyle summarized the properties of alkalies as follows.

  • Alkalies feel slippery.
  • Alkalies change the color of litmus from red to blue.
  • Alkalies become less alkaline when they are combined with acids.
In
essence, Boyle defined alkalies as substances that consume, or
neutralize, acids. Acids lose their characteristic sour taste and
ability to dissolve metals when they are mixed with alkalies. Alkalies
even reverse the change in color that occurs when litmus comes in
contact with an acid. Eventually alkalies became known as bases because they serve as the "base" for making certain salts.



The Arrhenius Definition of Acids and Bases
In 1884 Svante Arrhenius
suggested that salts such as NaCl dissociate when they dissolve in
water to give particles he called ions.

H2ONaCl(s) [ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]Na+(aq) + Cl-(aq)
Three years later Arrhenius extended this theory by suggesting that acids are neutral compounds that ionize
when they dissolve in water to give H+ ions and a corresponding
negative ion. According to his theory, hydrogen chloride is an acid
because it ionizes when it dissolves in water to give hydrogen (H+) and
chloride (Cl-) ions as shown in the figure below.

H2OHCl(g)[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة] H+(aq) + Cl-(aq)

Arrhenius argued that bases are
neutral compounds that either dissociate or ionize in water to give OH-
ions and a positive ion. NaOH is an Arrhenius base because it
dissociates in water to give the hydroxide (OH-) and sodium (Na+) ions.

H2ONaOH(s)[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]Na+(aq) + OH-(aq)
An Arrhenius acid is therefore any substance that ionizes when it dissolves in water to give the H+, or hydrogen, ion.
An Arrhenius base is any substance that gives the OH-, or hydroxide, ion when it dissolves in water.
Arrhenius acids include
compounds such as HCl, HCN, and H2SO4 that ionize in water to give the
H+ ion. Arrhenius bases include ionic compounds that contain the OH-
ion, such as NaOH, KOH, and Ca(OH)2.

This theory explains why acids
have similar properties: The characteristic properties of acids result
from the presence of the H+ ion generated when an acid dissolves in
water. It also explains why acids neutralize bases and vice versa.
Acids provide the H+ ion; bases provide the OH- ion; and these ions
combine to form water.

H+(aq) + OH-(aq) [ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة] H2O(l)
The Arrhenius theory has several disadvantages.

  • It
    can be applied only to reactions that occur in water because it defines
    acids and bases in terms of what happens when compounds dissolve in
    water.

  • It
    doesn't explain why some compounds in which hydrogen has an oxidation
    number of +1 (such as HCl) dissolve in water to give acidic solutions,
    whereas others (such as CH4) do not.

  • Only the
    compounds that contain the OH- ion can be classified as Arrhenius
    bases. The Arrhenius theory can't explain why other compounds (such as
    Na2CO3) have the characteristic properties of bases.


The Role of H+ and OH- Ions In the Chemistry of Aqueous Solutions
Becuase oxygen (EN = 3.44) is much more electronegative than hydrogen (EN = 2.20), the electrons in the H[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]O
bonds in water aren't shared equally by the hydrogen and oxygen atoms.
These electrons are drawn toward the oxygen atom in the center of the
molecule and away from the hydrogen atoms on either end. As a result,
the water molecule is polar. The oxygen atom carries a partial negative
charge ([ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]-), and the hydrogen atoms carry a partial positive charge ([ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]+).

[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]
When they dissociate to form ions, water molecules therefore form a positively charged H+ ion and a negatively charged OH- ion.
[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]
The opposite reaction can also occur [ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة] H+ ions can combine with OH- ions to form neutral water molecules.
[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]
The fact that water molecules
dissociate to form H+ and OH- ions, which can then recombine to form
water molecules, is indicated by the following equation.

[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]


To What Extent Does Water Dissociate to Form Ions?
At 25C, the density of water is 0.9971 g/cm3, or 0.9971 g/mL. The concentration of water is therefore 55.35 molar.
[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]
The concentration of the H+ and
OH- ions formed by the dissociation of neutral H2O molecules at this
temperature is only 1.0 x 10-7 mol/L. The ratio of the concentration of
the H+ (or OH-) ion to the concentration of the neutral H2O molecules
is therefore 1.8 x 10-9.

[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]
In other words, only about 2
parts per billion (ppb) of the water molecules dissociate into ions at
room temperature. The figure below shows a model of 20 water molecules,
one of which has dissociated to form a pair of H+ and OH- ions. If this
illustration was a very-high-resolution photograph of the structure of
water, we would encounter a pair of H+and OH- ions on the average of
only once for every 25 million such photographs



The Operational Definition of Acids and Bases
The fact that water dissociates
to form H+ and OH- ions in a reversible reaction is the basis for an
operational definition of acids and bases that is more powerful than
the definitions proposed by Arrhenius. In an operational sense, an acid is any substance that increases the concentration of the H+ ion when it dissolves in water. A base is any substance that increases the concentration of the OH- ion when it dissolves in water.

These definitions tie the
theory of acids and bases to a simple laboratory test for acids and
bases. To decide whether a compound is an acid or a base we dissolve it
in water and test the solution to see whether the H+ or OH- ion
concentration has increased.



Typical Acids and Bases
The properties of acids and
bases result from differences between the chemistry of metals and
nonmetals, as can be seen from the chemistry of these classes of
compounds: hydrogne, oxides, and hydroxides.

Compounds that contain hydrogen bound to a nonmetal are called nonmetal hydrides. Because they contain hydrogen in the +1 oxidation state, these compounds can act as a source of the H+ ion in water.
[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]
Metal hydrides, on the
other hand, contain hydrogen bound to a metal. Because these compounds
contain hydrogen in a -1 oxidation state, they dissociate in water to
give the H- (or hydride) ion.

[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]
The H- ion, with its pair of valence electrons, can abstract an H+ ion from a water molecule.
[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]
Since removing H+ ions from
water molecules is one way to increase the OH- ion concentration in a
solution, metal hydrides are bases.

[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]
A similar pattern can be found in the chemistry of the oxides formed by metals and nonmetals. Nonmetal oxides
dissolve in water to form acids. CO2 dissolves in water to give
carbonic acid, SO3 gives sulfuric acid, and P4O10 reacts with water to
give phosphoric acid.

[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]
Metal oxides, on the other hand, are bases. Metal oxides formally contain the O2- ion, which reacts with water to give a pair of OH- ions.
[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]
Metal oxides therefore fit the operational definition of a base.
[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]
We see the same pattern in the chemistry of compounds that contain the [ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]OH, or hydroxide, group. Metal hydroxides, such as LiOH, NaOH, KOH, and Ca(OH)2, are bases.
[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]
Nonmetal hydroxides, such as hypochlorous acid (HOCl), are acids.
[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]
The table below summarizes the
trends observed in these three categories of compounds. Metal hydrides,
metal oxides, and metal hydroxides are bases. Nonmetal hydrides,
nonmetal oxides, and nonmetal hydroxides are acids.

Typical Acids and Bases
AcidsBasesNon-metal Hydrides
HF, HCl, HBr, HCN,
HSCN, H2S
Metal Hydrides
HI, LiH, NaH,
KH, MgH2, CaH2
Non-metal Oxides
CO2, SO2, SO3,
NO2, P4O10
Metal Oxides
Li2O, Na2O, K2O,
MgO, CaO
Non-metal Hydroxides
HOCl, HONO2,
O2S(OH)2, OP(OH)3
Metal Hydroxides
LiOH, NaOH, KOH,
Ca(OH)2, Ba(OH)2

The acidic hydrogen atoms in the non-metal hydroxides
in the table above aren't bound to the nitrogen, sulfur, or phosphorus
atoms. In each of these compounds, the acidic hydrogen is attached to
an oxygen atom. These compounds are therefore all examples of oxyacids.

Skeleton structures for eight
oxyacids are given in the figure below. As a general rule, acids that
contain oxygen have skeleton structures in which the acidic hydrogens
are attached to oxygen atoms.

[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]
[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]
[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]
[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]
[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]

Practice Problem 1: Use Lewis structures to classify the following acids as either nonmetal hydrides (XH) or nonmetal hydroxides (XOH).
(a) HCN
(b) HNO3
(c) H2C2O4
(d) CH3CO2H[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذا الرابط]


Why are Metal Hydroxides Bases and Nonmetal Hydroxides Acids?
To understand why nonmetal
hydroxides are acids and metal hydroxides are bases, we have to look at
the electronegativities of the atoms in these compounds. Let's start
with a typical metal hydroxide: sodium hydroxide

[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]
The difference between the electronegativities of sodium and oxygen is very large ([ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]EN = 2.5). As a result, the electrons in the Na[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]O bond are not shared equally [ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]these
electrons are drawn toward the more electronegative oxygen atom. NaOH
therefore dissociates to give Na+ and OH- ions when it dissolves in
water.

[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]
We get a very different pattern when we apply the same procedure to hypochlorous acid, HOCl, a typical nonmetal hydroxide.
[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]
Here, the difference between the electronegativities of the chlorine and oxygen atoms is small ([ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]EN = 0.28). As a result, the electrons in the Cl[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]O bond are shared more or less equally by the two atoms. The O[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]H bond, on the other hand, is polar ([ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]EN = 1.24) [ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]the
electrons in this bond are drawn toward the more electronegative oxygen
atom. When this molecule ionizes, the electrons in the O-H bond remain
with the oxygen atom, and OCl- and H+ ions are formed.

[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]
There is no abrupt change from
metal to nonmetal across a row or down a column of the periodic table.
We should therefore expect to find compounds that lie between the
extremes of metal and nonmetal oxides, or metal and nonmetal
hydroxides. These compounds, such as Al2O3 and Al(OH)3, are called
amphoteric (literally, "either or both") because they can act as either
acids or bases. Al(OH)3, for example, acts as an acid when it reacts
with a base.

[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]
Conversely, it acts as a base when it reacts with an acid.
[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]
الرجوع الى أعلى الصفحة اذهب الى الأسفل
https://sciencebenha.alafdal.net
MaHmOuD SaLaH
Web Master
Web Master
MaHmOuD SaLaH

ذكر
الْمَشِارَكِات : 10554
الْعُمْر : 32
الْنِّقَاط : 19224
السٌّمعَة : 243

حصريا معلومات مكثفه عن acids and bases Empty
مُساهمةموضوع: رد: حصريا معلومات مكثفه عن acids and bases   حصريا معلومات مكثفه عن acids and bases Emptyالأحد سبتمبر 13, 2009 6:53 pm

The Brnsted Definition of Acids and Bases
The
Brnsted, or Brnsted-Lowry, model is based on a simple assumption: Acids
donate H+ ions to another ion or molecule, which acts as a base. The
dissociation of water, for example, involves the transfer of an H+ ion
from one water molecule to another to form H3O+ and OH- ions.


[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]
According
to this model, HCl doesn't dissociate in water to form H+ and Cl+ ions.
Instead, an H+ ion is transferred from HCl to a water molecule to form
H3O+ and Cl- ions, as shown in the figure below.

[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]
Because it is a proton, an
H+ ion is several orders of magnitude smaller than the smallest atom.
As a result, the charge on an isolated H+ ion is distributed over such
a small amount of space that this H+ ion is attracted toward any source
of negative charge that exists in the solution. Thus, the instant that
an H+ ion is created in an aqueous solution, it bonds to a water
molecule. The Brnsted model, in which H+ ions are transferred from one
ion or molecule to another, therefore makes more sense than the
Arrhenius theory, which assumes that H+ ions exist in aqueous solution.

Even the Brnsted model is naive.
Each H+ ion that an acid donates to water is actually bound to four
neighboring water molecules, as shown in the figure below.

A more realistic formula for the
substance produced when an acid loses an H+ ion is therefore H(H2O)4+,
or H9O4+. For all practical purposes, however, this substance can be
represented as the H3O+ ion.

The reaction between HCl and
water provides the basis for understanding the definitions of a Brnsted
acid and a Brnsted base. According to this theory, an H+ ion is
transferred from an HCl molecule to a water molecule when HCl
dissociates in water.

[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]
HCl
acts as an H+-ion donor in this reaction, and H2O acts as an H+
ion-acceptor. A Brnsted acid is therefore any substance (such as HCl)
that can donate an H+ ion to a base. A Brnsted base is any substance
(such as H2O) that can accept an H+ ion from an acid.

There are two ways of naming the
H+ ion. Some chemists call it a hydrogen ion; others call it a proton.
As a result, Brnsted acids are known as either hydrogen-ion donors or
proton donors. Brnsted bases are hydrogen-ion acceptors or proton
acceptors.

From the perspective of the
Brnsted model, reactions between acids and bases always involve the
transfer of an H+ ion from a proton donor to a proton acceptor. Acids
can be neutral molecules.


[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]
They can also be positive ions

[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]
or negative ions.

[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]
The
Brnsted theory therefore expands the number of potential acids. It also
allows us to decide which compounds are acids from their chemical
formulas. Any compound that contains hydrogen with an oxidation number
of +1 can be an acid. Brnsted acids include HCl, H2S, H2CO3, H2PtF6,
NH4+, HSO4-, and HMnO4.

Brnsted bases can be identified
from their Lewis structures. According to the Brnsted model, a base is
any ion or molecule that can accept a proton. To understand the
implications of this definition, look at how the prototypical base, the
OH- ion, accepts a proton.

[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]
The
only way to accept an H+ ion is to form a covalent bond to it. In order
to form a covalent bond to an H+ ion that has no valence electrons, the
base must provide both of the electrons needed to form the bond. Thus,
only compounds that have pairs of nonbonding valence electrons can act
as H+-ion acceptors, or Brnsted bases.

The following compounds, for example, can all act as Brnsted bases because they all contain nonbonding pairs of electrons.
[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]
The
Brnsted model expands the list of potential bases to include any ion or
molecule that contains one or more pairs of nonbonding valence
electrons. The Brnsted definition of a base applies to so many ions and
molecules that it is almost easier to count substances, such as the
following, that can't be Brnsted bases because they don't have pairs of
nonbonding valence electrons.

[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]
Practice Problem 2: Which of the following compounds can be Brnsted acids? Which can be Brnsted bases?
(a) H2O
(b) NH3
(c) HSO4-
(d) OH-
[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذا الرابط]
<U>
The Role of Water in the Brnsted Theory
The Brnsted theory explains water's role in acid-base reactions.

  • Water
    dissociates to form ions by transferring an H+ ion from one molecule
    acting as an acid to another molecule acting as a base.
H2O(l)+H2O(l)[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]H3O+(aq)+ OH-(aq)acid base

  • Acids react with water by donating an H+ ion to a neutral water molecule to form the H3O+ ion.
HCl(g)+H2O(l)[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]H3O+(aq)+ Cl-(aq) acid base

  • Bases react with water by accepting an H+ ion from a water molecule to form the OH- ion.
NH3(aq)+H2O(l)[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]NH4+(aq)+ OH-(aq)base acid

  • Water molecules can act as intermediates in acid-base reactions by gaining H+ ions from the acid
HCl(g) +H2O(l)[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]H3O+(aq)+ Cl-(aq)
and then losing these H+ ions to the base.

NH3(aq)+H3O+(aq)[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]NH4+(aq)+ H2O(l)
The
Brnsted model can be extended to acid-base reactions in other solvents.
For example, there is a small tendency in liquid ammonia for an H+ ion
to be transferred from one NH3 molecule to another to form the NH4+ and
NH2- ions.

2 NH3[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]NH4++ NH2-
By
analogy to the chemistry of aqueous solutions, we conclude that acids
in liquid ammonia include any source of the NH4+ ion and that bases
include any source of the NH2- ion.
The Brnsted model can even be extended to reactions that don't occur in
solution. A classic example of a gas-phase acid-base reaction is
encountered when open containers of concentrated hydrochloric acid and
aqueous ammonia are held next to each other. A white cloud of ammonium
chloride soon forms as the HCl gas that escapes from one solution
reacts with the NH3 gas from the other.

HCl(g)+ NH3(g)[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]NH4Cl(s)
This
reaction involves the transfer of an H+ ion from HCl to NH3 and is
therefore a Brnsted acid-base reaction, even though it occurs in the
gas phase
الرجوع الى أعلى الصفحة اذهب الى الأسفل
https://sciencebenha.alafdal.net
MaHmOuD SaLaH
Web Master
Web Master
MaHmOuD SaLaH

ذكر
الْمَشِارَكِات : 10554
الْعُمْر : 32
الْنِّقَاط : 19224
السٌّمعَة : 243

حصريا معلومات مكثفه عن acids and bases Empty
مُساهمةموضوع: رد: حصريا معلومات مكثفه عن acids and bases   حصريا معلومات مكثفه عن acids and bases Emptyالأحد سبتمبر 13, 2009 6:54 pm

Conjugate Acid-Base Pairs
Acids and bases exist as conjugate acid-base pairs. The term conjugate
Every time a Brnsted acid acts as an H+-ion donor, it forms a conjugate
base. Imagine a generic acid, HA. When this acid donates an H+ ion to
water, one product of the reaction is the A- ion, which is a
hydrogen-ion acceptor, or Brnsted base.


comes from the Latin stems meaning "joined together" and refers to
things that are joined, particularly in pairs, such as Brnsted acids
and bases.
HA+H2O[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]H3O+ + A-acid base
Conversely, every time a base gains an H+ ion, the product is a Brnsted acid, HA.


A-+H2O[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]HA+OH-base acid
Acids
and bases in the Brnsted model therefore exist as conjugate pairs whose
formulas are related by the gain or loss of a hydrogen ion.

Our use of the symbols HA and A- for a conjugate
acid-base pair does not mean that all acids are neutral molecules or
that all bases are negative ions. It signifies only that the acid
contains an H+ ion that isn't present in the conjugate base. Brnsted
acids or bases can be neutral molecules, positive ions, or negative
ions. Various Brnsted acids and their conjugate bases are given in the
table below.




Typical Brnsted Acids and Their Conjugate Bases
Acid BaseH3O+ H2OH2O OH-OH- O2-HCl Cl-H2SO4 HSO4-HSO4-SO42-NH4+ NH3NH3 NH2-

A
compound can be both a Brnsted acid and a Brnsted base. H2O, OH-,
HSO4-, and NH3, for example, can be found in both columns in the table
above. Water is the perfect example of this behavior because it
simultaneously acts as an acid and a base when it forms the H3O+ and
OH- ions.



[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]

Strong and Weak Acids and Bases


Many hardware stores sell "muriatic acid" [ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة] a 6 M solution of hydrochloric acid HCl(aq)[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]to clean bricks and concrete. Grocery stores sell vinegar, which is a 1 M
solution of acetic acid: CH3CO2H. Although both substances are acids,
you wouldn't use muriatic acid in salad dressing, and vinegar is
ineffective in cleaning bricks or concrete.

The difference between the two is that muriatic acid is a strong acid and vinegar is a weak acid. Muriatic acid is strong because it is very good at transferring an H+ ion to a water molecule. In a 6 M solution of hydrochloric acid, 99.996% of the HCl molecules react with water to form H3O+ and Cl- ions.



HCl(aq) + H2O(l) [ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]H3O+(aq) + Cl-(aq)
Vinegar is a weak acid because it is not very good at transferring H+ ions to water. In a 1 M solution, less than 0.4% of the CH3CO2H molecules react with water to form H3O+ and CH3CO2- ions. <blockquote>
CH3CO2H(aq) + H2O(l) [ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة] H3O+(aq) + CH3CO2-(aq)
</blockquote>More than 99.6% of the acetic acid molecules remain intact.






The Acid Dissociation Equilibrium Constant, Ka
The relative strengths of acids is often described in terms of an acid-dissociation equilibrium constant, Ka.
To understand the nature of this equilibrium constant, let's assume
that the reaction between an acid and water can be represented by the
following generic equation.



HA(aq)+ H2O(l)[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]H3O+(aq)+ A-(aq)
<b>In other words,some of the HA molecules react to form H3O+ and A- ions,


.
By convention, the concentrations
of these ions in units of moles per liter are represented by the
symbols [H3O+] and [A-]. The concentration of the HA molecules that
remain in solution is represented by the symbol [HA].

The value of Ka for acid is calculated from the following equation.

[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]
When
a strong acid dissolves in water, the acid reacts extensively with
water to form H3O+ and A- ions. (Only a small residual concentration of
the HA molecules remains in solution.) The product of the
concentrations of the H3O+ and A- ions is therefore much larger than
the concentration of the HA molecules, so Ka for a strong acid is greater than 1.

Example: Hydrochloric acid has a Ka of roughly 1 x 106.

[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]
Weak
acids, on the other hand, react only slightly with water. The product
of the concentrations of the H3O+ and A- ions is therefore smaller than
the concentration of the residual HA molecules. As a result, Ka for a weak acid is less than 1.

Example: Acetic acid has a Ka of only 1.8 x 10-5.

[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]
Ka can therefore be used to distinguish between strong acids and weak acids.

Strong acids: Ka > 1Weak acids: Ka < 1
The Relative Strengths of Conjugate Acid-base Pairs

  • Strong acids have a weak conjugate base.
Example: HCl is a strong
acid. If HCl is a strong acid, it must be a good proton donor. HCl can
only be a good proton donor, however, if the Cl- ion is a poor proton
acceptor. Thus, the Cl- ion must be a weak base.

HCl(g) +H2O(l)[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]H3O+(aq) + Cl-(aq) Strong
acid
Weak
base

  • Strong bases have a weak conjugate acid.
Example: Let's consider the
relationship between the strength of the ammonium (NH4+) and its
conjugate base, ammonia (NH3). The NH4+ ion is a weak acid because
ammonia is a reasonably good base.

NH4+(aq)+H2O(l) [ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]H3O+(aq)+NH3(aq)Weak
acid
Good
base




Comparing Relative Strengths of Pairs of Acids and Bases
The value of Ka
for an acid can be used to decide whether it is a strong acid or a weak
acid, in an absolute sense. It can also be used l to compare the
relative strengths of a pair of acids.

Example: Consider HCl and the H3O+ ion.
HCl Ka = 1 x 106H3O+ Ka = 55
These Ka values suggest that both are strong acids, but HCl is a stronger acid than the H3O+ ion.
A high proportion of the HCl
molecules in an aqueous solution reacts with water to form H3O+ and Cl-
ions. The Brnsted theory suggests that every acid-base reaction
converts an acid into its conjugate base and a base into its conjugate
acid.

[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]
There are two acids and two bases in this reaction. The stronger acid, however, is on the left side of the equation.
HCl(g)+H2O(l)[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]H3O+(aq)+ Cl-(aq) stronger
acid
weaker
acid
The
general rules suggest that the stronger of a pair of acids must form
the weaker of a pair of conjugate bases. The fact that HCl is a
stronger acid than the H3O+ ion implies that the Cl- ion is a weaker
base than water.

Acid strength: HCl > H3O+Base strength: Cl- < H2O
Thus, the equation for the reaction between HCl and water can be written as follows.
HCl(g)+H2O(l)[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]H3O+(aq)+Cl-(aq) stronger
acid
stronger
base
weaker
acid
weaker
base
It isn't surprising that 99.996% of the HCl molecules in a 6 M
solution react with water to give H3O+ ions and Cl- ions. The stronger
of a pair of acids should react with the stronger of a pair of bases to
form a weaker acid and a weaker base.

Let's look at the relative strengths of acetic acid and the H3O+ ion.
CH3CO2H Ka = 1.8 x 10-5H3O+ Ka = 55
The values of Ka
for these acids suggest that acetic acid is a much weaker acid than the
H3O+ ion, which explains why acetic acid is a weak acid in water. Once
again, the reaction between the acid and water must convert the acid
into its conjugate base and the base into its conjugate acid.

[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]
But this time, the stronger acid and the stronger base are on the right side of the equation.
CH3CO2H(aq)+H2O(l)[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]H3O+(aq) +CH3CO2-(aq)weaker
acid
weaker
base
stronger
acid
stronger
base
As
a result, only a few of the CH3CO2H molecules actually donate an H+ ion
to a water molecule to form the H3O+ and CH3CO2- ions.



The magnitude of Ka
can also be used to explain why some compounds that qualify as Brnsted
acids or bases don't act like acids or bases when they dissolve in
water. When the value of Ka for an acid is relatively
large, the acid reacts with water until essentially all of the acid
molecules have been consumed. Sulfuric acid (Ka = 1 x 103), for example, reacts with water until 99.9% of the H2SO4 molecules in a 1 M solution have lost a proton to form HSO4- ions.

H2SO4(aq) + H2O(l) [ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة] H3O+(aq) + HSO4-(aq)
As Ka becomes smaller, the extent to which the acid reacts with water decreases.
As long as Ka for the acid is significantly larger than the value of Ka
for water, the acid will ionize to some extent. Acetic acid, for
example, reacts to some extent with water to form H3O+ and CH3CO2-, or
acetate, ions.
<blockquote>
CH3CO2H(aq) + H2O(l) [ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة] H3O+(aq) + CH3CO2-(aq)
</blockquote>As the Ka value for the acid approaches the Ka
for water, the compound becomes more like water in its acidity.
Although it is still a Brnsted acid, it is so weak that we may be
unable to detect this acidity in aqueous solution.

Some potential Brnsted acids are so weak that their Ka values are smaller than water's. Ammonia, for example, has a Ka
of only 1 x 10-33. Although NH3 can be a Brnsted acid, because it has
the potential to act as a hydrogen-ion donor, there is no evidence of
this acidity when it dissolves in water.



The Leveling Effect of Water
All strong acids and bases seem to have the same strength when dissolved in water, regardless of the value of Ka. This phenomenon is known as the leveling effect of water [ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]the
tendency of water to limit the strength of strong acids and bases. We
can explain this by noting that strong acids react extensively with
water to form the H3O+ ion. More than 99% of the HCl molecules in
hydrochloric acid react with water to form H3O+ and Cl- ions, for
example,
<blockquote>
HCl(g) + H2O(l) [ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة] H3O+(aq) + Cl-(aq)
</blockquote>and more than 99% of the H2SO4 molecules in a 1 M solution react with water to form H3O+ ions and HSO4- ions.<blockquote>
H2SO4(aq) + H2O(l) [ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة] H3O+(aq) + HSO4-(aq)
</blockquote>Thus, the strength of strong acids is limited by the strength of the acid (H3O+) formed when water molecules pick up an H+ ion.
A similar phenomenon occurs in
solutions of strong bases. Strong bases react quantitatively with water
to form the OH- ion. Once this happens, the solution cannot become any
more basic. The strength of strong bases is limited by the strength of
the base (OH-) formed when water molecules lose an H+ ion.



The Advantages of the Brnsted Definition
The Brnsted definition of acids and bases offers many advantages over the Arrhenius and operational definitions.

  • It expands the list of potential acids to include positive and negative ions, as well as neutral molecules.
  • It expands the list of bases to include any molecule or ion with at least one pair of nonbonding valence electrons.
  • It explains the role of water in acid-base reactions: Water accepts H+ ions from acids to form the H3O+ ion.
  • It can be expanded to include solvents other than water and reactions that occur in the gas or solid phases.
  • It links acids and bases into conjugate acid-base pairs.
  • It can explain the relationship between the strengths of an acid and its conjugate base.
  • It can explain differences in the relative strengths of a pair of acids or a pair of bases.
  • It can explain the leveling effect of water [ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة] the fact that strong acids and bases all have the same strength when dissolved in water.
Because of these advantages, whenever chemists use the words acid or base without any further description, they are referring to a Brnsted acid or a Brnsted base.


pH As A Measure of the Concentration of the H3O+ Ion
Pure
water is both a weak acid and a weak base. By itself, water forms only
a very small number of the H3O+ and OH- ions that characterize aqueous
solutions of stronger acids and bases.

H2O(l)+H2O(l)[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة] H3O+(aq)+OH-(aq) base acid acid base
The
concentrations of the H3O+ and OH- ions in water can be determined by
carefully measuring the ability of water to conduct an electric
current. At 25oC, the concentrations of these ions in pure water is 1.0
x 10-7 moles per liter.

[H3O+] = [OH-] = 1.0 x 10-7 M (at 25C)
When we add a strong acid to water, the concentration of the H3O+ ion increases.
HCl(aq) + H2O(l) [ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة] H3O+(aq) + Cl-(aq)
At
the same time, the OH- ion concentration decreases because the H3O+
ions produced in this reaction neutralize some of the OH- ions in water.

H3O+(aq) + OH-(aq) [ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة] 2 H2O(l)
The
product of the concentrations of the H3O+ and OH- ions is constant, no
matter how much acid or base is added to water. In pure water at 25oC,
the product of the concentration of these ions is 1.0 x 10-14.
<blockquote>
[H3O+][OH-] = 1.0 x 10-14
</blockquote>The
range of concentrations of the H3O+ and OH- ions in aqueous solution is
so large that it is difficult to work with. In 1909 the Danish
biochemist S. P. L. Sorenson suggested reporting the concentration of
the H3O+ ion on a logarithmic scale, which he named the pH scale.
Because the H3O+ ion concentration in water is almost always smaller
than 1, the log of these concentrations is a negative number. To avoid
having to constantly work with negative numbers, Sorenson defined pH as
the negative of the log of the H3O+ ion concentration.

pH = -log [H3O+]

The concept of pH compresses
the range of H3O+ ion concentrations into a scale that is much easier
to handle. As the H3O+ ion concentration decreases from roughly 100 to
10-14, the pH of the solution increases from 0 to 14.

If the concentration of the H3O+ ion in pure water at 25oC is 1.0 x 10-7 M, the pH of pure water is 7.
pH = -log [H3O+] = -log (1.0 x 10-7) = 7
When the pH of a solution is less than 7, the solution is acidic. When the pH is more than 7, the solution is basic.
Acidic: pH < 7 Basic: pH > 7 [center]pH of Common Acids and Bases
The
pH of a solution depends on the strength of the acid or base in the
solution. Measurements of the pH of dilute solutions are therefore good
indicators of the relative strengths of acids and bases. Values of the
pH of 0.10 M solutions of a number of common acids and bases are given in the table below.

pH of 0.10 M Solutions of Common Acids and Bases
Compound pHHCl (hydrochloric acid) 1.1H2SO4 (sulfuric acid) 1.2NaHSO4 (sodium hydrogen sulfate) 1.4H2SO3 (sulfurous acid) 1.5H3PO4 (phosphoric acid) 1.5HF (hydrofluoric acid) 2.1CH3CO2H (acetic acid) 2.9H2CO3 (carbonic acid) 3.8 (saturated solution)H2S (hydrogen sulfide) 4.1NaH2PO4 (sodium dihydrogen phosphate) 4.4NH4Cl (ammonium chloride) 4.6HCN (hydrocyanic acid) 5.1Na2SO4 (sodium sulfate) 6.1NaCl (sodium chloride) 6.4NaCH3CO2 (sodium acetate) 8.4NaHCO3 (sodium bicarbonate) 8.4Na2HPO4 (sodium hydrogen phosphate) 9.3Na2SO3 (sodium sulfite) 9.8NaCN (sodium cyanide) 11.0NH3 (aqueous ammonia) 11.1Na2CO3 (sodium carbonate) 11.6Na3PO4 (sodium phosphate) 12.0NaOH (sodium hydroxide, lye) 13.0
[/center]
</b>
الرجوع الى أعلى الصفحة اذهب الى الأسفل
https://sciencebenha.alafdal.net
MaHmOuD SaLaH
Web Master
Web Master
MaHmOuD SaLaH

ذكر
الْمَشِارَكِات : 10554
الْعُمْر : 32
الْنِّقَاط : 19224
السٌّمعَة : 243

حصريا معلومات مكثفه عن acids and bases Empty
مُساهمةموضوع: رد: حصريا معلومات مكثفه عن acids and bases   حصريا معلومات مكثفه عن acids and bases Emptyالأحد سبتمبر 13, 2009 6:55 pm

The Polarity of the X[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]H Bond
When all other factors are kept constant, acids become stronger as the XH
bond becomes more polar. The second-row nonmetal hydrides, for example,
become more acidic as the difference between the electronegativity of
the X and H atoms increases. HF is the strongest of these four acids, and CH4 is one of the weakest Brnsted acids known.


HF Ka = 7.2 x 10-4 [ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]EN = 1.8 H2O Ka = 1.8 x 10-16 EN = 1.2 NH3 Ka = 1 x 10-33 EN = 0.8 CH4 Ka = 1 x 10-49 EN = 0.4
When these compounds act as an acid, an H-X bond is broken to form H+ and X- ions. The more polar this bond, the easier it is to form these ions. Thus, the more polar the bond, the stronger the acid.
An 0.1 M
HF solution is moderately acidic. Water is much less acidic, and the
acidity of ammonia is so small that the chemistry of aqueous solutions
of this compound is dominated by its ability to act as a base.


HF pH = 2.1H2O pH = 7NH3 pH = 11.1



The Size of the X Atom




At first glance, we might
expect that HF, HCl, HBr, and HI would become weaker acids as we go
down this column of the periodic table because the X-H bond
becomes less polar. Experimentally, we find the opposite trend. These
acids actually become stronger as we go down this column.
This occurs because the size of the X atom influences the acidity of the X-H bond. Acids become stronger as the X-H bond becomes weaker, and bonds generally become weaker as the atoms get larger as shown in the figure below.


[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]
The Ka data for HF, HCl, HBr, and HI reflect the fact that the X-H bond-dissociation enthalpy (BDE) becomes smaller as the X atom becomes larger.


HF Ka = 7.2 x 10-4 BDE = 569 kJ/molHCl Ka = 1 x 106 BDE = 431 kJ/molHBr Ka = 1 x 109 BDE = 370 kJ/molHI Ka = 3 x 109 BDE = 300 kJ/mol





The Charge on the Acid or Base





The charge on a molecule or ion can influence its ability to act as an acid or a base. This is clearly shown when the pH of 0.1 M solutions of H3PO4 and the H2PO4-, HPO42-, and PO43- ions are compared.


H3PO4 pH = 1.5H2PO4- pH = 4.4HPO42- pH = 9.3PO43- pH = 12.0
Compounds become less acidic and more basic as the negative charge increases.


Acidity: H3PO4 > H2PO4- > HPO42-
Basicity: H2PO4- < HPO42- < PO43-





The Oxidation State of the Central Atom






There is no
difference in the polarity, size, or charge when we compare oxyacids of
the same element, such as H2SO4 and H2SO3 or HNO3 and HNO2, yet there
is a significant difference in the strengths of these acids. Consider
the following Ka data, for example.


H2SO4:Ka = 1 x 103 HNO3: Ka = 28H2SO3: Ka = 1.7 x 10-2 HNO2: Ka = 5.1 x 10-4
The
acidity of these oxyacids increases significantly as the oxidation
state of the central atom becomes larger. H2SO4 is a much stronger acid
than H2SO3, and HNO3 is a much stronger acid than HNO2. This trend is
easiest to see in the four oxyacids of chlorine.


Oxyacid Ka Oxidation
Number of
the ChlorineHOCl 2.9 x 10-8 +1HOClO 1.1 x 10-2 +3HOClO2 5.0 x 102 +5HOClO3 1 x 103 +7


This factor of 1011 difference in the value of Ka
for hypochlorous acid (HOCl) and perchloric acid (HOClO3) can be traced
to the fact that there is only one value for the electronegativity of
an element, but the tendency of an atom to draw electrons toward itself
increases as the oxidation number of the atom increases.
As the oxidation number of the chlorine atom increases, the atom
becomes more electronegative. This tends to draw electrons away from
the oxygen atoms that surround the chlorine, thereby making the oxygen
atoms more electronegative as well, as shown in the figure below. As a
result, the O-H bond becomes more polar, and the compound becomes more
acidic.



The relative strengths of Brnsted bases can be predicted from the
relative strengths of their conjugate acids combined with the general
rule that the stronger of a pair of acids always has the weaker
conjugate base.
الرجوع الى أعلى الصفحة اذهب الى الأسفل
https://sciencebenha.alafdal.net
MaHmOuD SaLaH
Web Master
Web Master
MaHmOuD SaLaH

ذكر
الْمَشِارَكِات : 10554
الْعُمْر : 32
الْنِّقَاط : 19224
السٌّمعَة : 243

حصريا معلومات مكثفه عن acids and bases Empty
مُساهمةموضوع: رد: حصريا معلومات مكثفه عن acids and bases   حصريا معلومات مكثفه عن acids and bases Emptyالأحد سبتمبر 13, 2009 6:56 pm

For more than 300 years, substances that behaved like vinegar have been classified as acids, while those that have properties like the ash from a wood fire have been called alkalies or bases. The name "acid" comes from the Latin acidus,
which means "sour," and refers to the sharp odor and sour taste of many
acids. Vinegar tastes sour because it is a dilute solution of acetic
acid in water; lemon juice is sour because it contains citric acid;
milk turns sour when it spoils because of the formation of lactic acid;
and the sour odor of rotten meat can be attributed to carboxylic acids
such as butyric acid formed when fat spoils.
Today, when chemists use the words "acid" or "base" they refer to a
model developed independently by Br&oslash;nsted, Lowry, and
Bjerrum. Since the most explicit statement of this theory was contained
in the writings of Br&oslash;nsted, it is most commonly known as
the "Br&oslash;nsted acid-base" theory.


Br&oslash;nsted Acid-Base Theory
Br&oslash;nsted
argued that all acid-base reactions involve the transfer of an H+ ion,
or proton. Water reacts with itself, for example, by transferring an H+
ion from one molecule to another to form an H3O+ ion and an OH- ion.


[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]
According to this theory, an acid is a "proton donor" and a base is a "proton acceptor."
Acids are often divided into categories such as "strong" and "weak." One measure of the strength of an acid is the
acid-dissociation equilibrium constant, Ka, for that acid.


[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]
When Ka is relatively large, we have a strong acid.


HCl: Ka = 1 x 103
When it is small, we have a weak acid.


CH3CO2H: Ka = 1.8 x 10-5
When it is very small, we have a very weak acid.


H2O: Ka = 1.8 x 10-16
In 1909, S. P.
L. S&oslash;renson suggested that the enormous range of
concentrations of the H3O+ and OH- ions in aqueous solutions could be
compressed into a more manageable set of data by taking advantage of
logarithmic mathematics and calculating the pH or pOH of the solution.


pH = - log [H3O+]
pOH = - log [OH-]
The
"p" in pH and pOH is an operator that indicates that the negative of
the logarithm should be calculated for any quantity to which it is
attached. Thus, pKa is the negative of the logarithm of the
acid-dissociation equilibrium constant.


pKa = - log Ka
The only disadvantage
of using pKa as a measure of the relative strengths of acids is the
fact that large numbers now describe weak acids, and small (negative)
numbers describe strong acids.




HCl[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]Ka = -3 CH3CO2H[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]Ka = 4.7 H2O[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]Ka = 15.7


An important features of the Br&oslash;nsted theory is the
relationship it creates between acids and bases. Every
Br&oslash;nsted acid has a conjugate base, and vice versa.


[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]
Just as the magnitude of Ka is a measure of the strength of an acid, the value of Kb reflects the strength of its conjugate base. Consider what happens when we multiply the Ka expression for a generic acid (HA) by the Kb expression for its conjugate base (A-).


[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]
If we now replace each term in this equation by the appropriate equilibrium constant, we get the following equation.


KaKb = Kw = 1 x 10-14
Because the product of Ka times Kb
is a relatively small number, either the acid or its conjugate base can
be "strong." But if one is strong, the other must be weak. Thus, a
strong acid must have a weak conjugate base.


[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]
A strong base, on the other hand, must have a weak conjugate acid.


[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]



Br&oslash;nsted Acids and Bases in Nonaqueous Solutions
Water has a limiting effect on the strength of acids and bases. All strong acids behave the same in water -- 1 M solutions of the strong acids all behave as 1 M
solutions of the H3O+ ion -- and very weak acids cannot act as acids in
water. Acid-base reactions don't have to occur in water, however. When
other solvents are used, the full range of acid-base strength shown in
the following table can be observed.






Typical Br&oslash;nsted Acids and Their Conjugate Bases




CompoundKapKaConjugateBaseKbpKb
HI3 x 109-9.5I-3 x 10-2423.5HCl 1 x 106-6Cl- 1 x 10-2020 H2SO4 1 x 103
-3HSO4- 1 x 10-1717H3O+ 55 -1.7 H2O 1.8 x 10-16 15.7HNO3 28-1.4NO3-3.6
x 10-1615.4 H3PO4 7.1 x 10-32.1H2PO4- 1.4 x 10-12 11.9 CH3CO2H 1.8 x
10-54.7CH3CO2- 5.6 x 10-109.3H2S 1.0 x 10-7 7.0 HS- 1 x 10-77.0H2O 1.8
x 10-1615.7 OH- 55-1.7CH3OH 1 x 10-1818CH3O- 1 x 104-4 HCCH 1 x 10-2525
HCC-1 x 1011-11 NH3 1 x 10-33 33NH2-1 x 1019 -19 H2 1 x 10-3535 H-1 x
1021 -21 CH2=CH2 1 x 10-4444CH2=CH-1 x 1030 -30 CH4 1 x 10-4949CH3-1 x
1035-35


The strongest acids are in the upper-left corner of this table; the
strongest bases in the bottom-right corner. Each base is strong enough
to deprotonate the acid in any line above it. The hydride ion (H-), for
example, can convert an alcohol into its conjugate base


[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]
and the amide (NH2-) ion can deprotonate an alkyne.


[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]
الرجوع الى أعلى الصفحة اذهب الى الأسفل
https://sciencebenha.alafdal.net
MaHmOuD SaLaH
Web Master
Web Master
MaHmOuD SaLaH

ذكر
الْمَشِارَكِات : 10554
الْعُمْر : 32
الْنِّقَاط : 19224
السٌّمعَة : 243

حصريا معلومات مكثفه عن acids and bases Empty
مُساهمةموضوع: رد: حصريا معلومات مكثفه عن acids and bases   حصريا معلومات مكثفه عن acids and bases Emptyالأحد سبتمبر 13, 2009 6:56 pm

Transition-Metal Ions as Br&oslash;nsted Acids
It is easy to understand why aqueous solutions of HCl or CH3CO2H are acidic. The following data for the pH of 0.1 M solutions of transition-metal ions are a bit harder to explain.


FeCl3: pH = 2.0AlCl3: pH = 3.0Cu(NO3)2: pH = 4.0
We
can't attribute the acidity of these solutions to the Cl- or NO3- ions
because these ions are weak bases. The acidity of these solutions must
result from the behavior of the Fe3+, Al3+, and Cu2+ ions.
The Fe3+, Al3+, and Cu2+ ions can't be Brnsted acids by themselves.
They can only act as proton donors by influencing the ability of the
neighboring water molecules to give up H+ ions. They do this by first
forming covalent bonds to six water molecules to form a
complex ion.
Water molecules covalently bound to one of these metal ions are more
acidic than normal. Thus, reactions such as the following occur.
<blockquote>
Al(H2O)63+(aq) + H2O(l) [ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة] Al(H2O)5(OH)2+(aq) + H3O+(aq)



</blockquote>Fe(H2O)63+(aq) + H2O(l) [ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة] Fe(H2O)5(OH)2+(aq) + H3O+(aq)
These reactions give rise to a net increase in the H3O+ ion
concentration in these solutions, thereby making the solutions acidic.
الرجوع الى أعلى الصفحة اذهب الى الأسفل
https://sciencebenha.alafdal.net
MaHmOuD SaLaH
Web Master
Web Master
MaHmOuD SaLaH

ذكر
الْمَشِارَكِات : 10554
الْعُمْر : 32
الْنِّقَاط : 19224
السٌّمعَة : 243

حصريا معلومات مكثفه عن acids and bases Empty
مُساهمةموضوع: رد: حصريا معلومات مكثفه عن acids and bases   حصريا معلومات مكثفه عن acids and bases Emptyالأحد سبتمبر 13, 2009 6:59 pm

The Lewis Definitions of Acids and Bases
In
1923 G. N. Lewis suggested another way of looking at the reaction
between H+ and OH- ions. In the Brnsted model, the OH- ion is the
active species in this reaction [ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة] it accepts an H+ ion to form a covalent bond. In the Lewis model, the H+ ion is the active species[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]it accepts a pair of electrons from the OH- ion to form a covalent bond.


[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]
In the Lewis theory of acid-base reactions, bases donate pairs of electrons and acids accept pairs of electrons. A Lewis acid
is therefore any substance, such as the H+ ion, that can accept a pair
of nonbonding electrons. In other words, a Lewis acid is an
electron-pair acceptor. A Lewis base is any substance, such as the OH- ion, that can donate a pair of nonbonding electrons. A Lewis base is therefore an electron-pair donor.
One advantage of the Lewis theory is the way it complements the model
of oxidation-reduction reactions. Oxidation-reduction reactions involve
a transfer of electrons from one atom to another, with a net change in
the oxidation number of one or more atoms.


[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]
The
Lewis theory suggests that acids react with bases to share a pair of
electrons, with no change in the oxidation numbers of any atoms. Many
chemical reactions can be sorted into one or the other of these
classes. Either electrons are transferred from one atom to another, or
the atoms come together to share a pair of electrons.
The principal advantage of the Lewis theory is the way it expands the
number of acids and therefore the number of acid-base reactions. In the
Lewis theory, an acid is any ion or molecule that can accept a pair of
nonbonding valence electrons. In the preceding section, we concluded
that Al3+ ions form bonds to six water molecules to give a complex ion.


Al3+(aq) + 6 H2O(l) [ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة] Al(H2O)63+(aq)
This
is an example of a Lewis acid-base reaction. The Lewis structure of
water suggests that this molecule has nonbonding pairs of valence
electrons and can therefore act as a Lewis base. The electron
configuration of the Al3+ ion suggests that this ion has empty 3s, 3p, and 3d orbitals that can be used to hold pairs of nonbonding electrons donated by neighboring water molecules.


Al3+ = [Ne] 3s0 3p0 3d0
Thus,
the Al(H2O)63+ ion is formed when an Al3+ ion acting as a Lewis acid
picks up six pairs of electrons from neighboring water molecules acting
as Lewis bases to give an
acid-base complex, or complex ion.
The Lewis acid-base theroy explains why BF3 reacts with ammonia. BF3 is
a trigonal-planar molecule because electrons can be found in only three
places in the valence shell of the boron atom. As a result, the boron
atom is sp2 hybridized, which leaves an empty 2pz orbital on the boron atom. BF3 can therefore act as an electron-pair acceptor, or Lewis acid. It can use the empty 2pz
orbital to pick up a pair of nonbonding electrons from a Lewis base to
form a covalent bond. BF3 therefore reacts with Lewis bases such as NH3
to form acid-base complexes in which all of the atoms have a filled
shell of valence electrons, as shown in the figure below.
The Lewis acid-base theory can also be used to explain why nonmetal
oxides such as CO2 dissolve in water to form acids, such as carbonic
acid H2CO3.


CO2(g) + H2O(l) [ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة] H2CO3(aq)
In
the course of this reaction, the water molecule acts as an
electron-pair donor, or Lewis base. The electron-pair acceptor is the
carbon atom in CO2. When the carbon atom picks up a pair of electrons
from the water molecule, it no longer needs to form double bonds with
both of the other oxygen atoms as shown in the figure below


[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]
One
of the oxygen atoms in the intermediate formed when water is added to
CO2 carries a positive charge; another carries a negative charge. After
an H+ ion has been transferred from one of these oxygen atoms to the
other, all of the oxygen atoms in the compound are electrically
neutral. The net result of the reaction between CO2 and water is
therefore carbonic acid, H2CO3.




الرجوع الى أعلى الصفحة اذهب الى الأسفل
https://sciencebenha.alafdal.net
 

حصريا معلومات مكثفه عن acids and bases

استعرض الموضوع التالي استعرض الموضوع السابق الرجوع الى أعلى الصفحة 
صفحة 1 من اصل 1

 مواضيع مماثلة

-

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
Science benha | منتديات كلية علوم بنها|خدمات علوم بنها| اسلاميات| برامج | صور| افلام | mp3 :: منتديات علوم بنها :: خدمات كلية علوم بنها :: الفرقه الاولى-